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The objective of a global sensitivity analysis is to rank the importance of the system inputs considering their
uncertainty and the influence they have upon the uncertainty of the system output, typically over a large
region of input space. This paper introduces a new unified framework of global sensitivity analysis for systems
whose input probability distributions are independent and/or correlated. The new treatment is based on
covariance decomposition of the unconditional variance of the output. The treatment can be applied to
mathematical models, as well as to measured laboratory and field data. When the input probability distribution
is correlated, three sensitivity indices give a full description, respectively, of the total, structural (reflecting
the system structure) and correlative (reflecting the correlated input probability distribution) contributions for
an input or a subset of inputs. The magnitudes of all three indices need to be considered in order to quantitatively
determine the relative importance of the inputs acting either independently or collectively. For independent
inputs, these indices reduce to a single index consistent with previous variance-based methods. The estimation
of the sensitivity indices is based on a meta-modeling approach, specifically on the random sampling-high
dimensional model representation (RS-HDMR). This approach is especially useful for the treatment of

laboratory and field data where the input sampling is often uncontrolled.

1. Introduction

Suppose that an input—output system structure is described
by a deterministic relation

y =S = flxg xp, s %) ey

where x; denotes the ith input and y is the output. We will use
upper-case letters, i.e., X;, Y, when referring to the generic
aspects of variables. Lower-case letters, i.e., x;, y, represent their
observed values. Boldface, as X or x, is used to designate
vectors. Sensitivity analysis is concerned with understanding
how the system input variations influence the changes of the
output. This is often motivated by the fact that there is
uncertainty about the true values of the inputs used in a particular
application. Thus, in sensitivity analysis, the X;’s are formally
treated as random variables with specified distributions, and,
consequently, Y is also a random variable with a probability
distribution. The characterization of the empirical output
distribution, given the input probability distribution, is the goal
of uncertainty analysis. The assessment of the relative impor-
tance of the inputs in the above relation is the objective of
sensitivity analysis.!™

Variance-based methods are commonly used*”” in global
sensitivity analysis for quantifying the sensitivity of the output
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Y to the inputs X in terms of a reduction in the variance
of Y

S, = V/V(Y) = Var[E(YIX))]/Var(Y) 2)

S; = V/V(Y) = (Var[EYIX,, X)] — V, = V)/Var(Y)

3)

where E(+) and Var(+) represent the expected value and
variance; S; and Sj; are referred to as the main and first-order
interaction effects for X; and X;, X;, respectively. These measures
reflect the reduced portions of the output uncertainty caused by
the inputs and their interactions when the true values of a subset
of inputs X, (where p is a subset of {1, 2,**+, n}) are known.
Moreover, the total effect of X; is defined as

Sy = Vg /V(Y) = (Var(Y) — Var[E(YIX_,)])/Var(Y)
4)

where X_; indicates all inputs except X;. S7; is the ratio of the
remaining uncertainty of the output to the unconditional output
uncertainty V(Y) when the true values of all inputs except X;
are known.

The variance-based methods are closely related to the
decomposition of f(x) itself:?
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O =fo+ DA+ D, [iax) + ot f (K,
i=1

1=igj=n
-1

=fy+ Dh,)
=1

)
where
Jo = EX) (6)
Jix) = EYx) — f, (7
it x) = EXxp ) = fi = f; = fo )

with E(f,(X,,)) = 0 for all the nonconstant component functions
above. The last term is determined by the difference of y and
all other terms on the right, thus f(x) is exactly equal to y. The
component functions in the above decomposition provide their
best approximation to f(x) in a least-squares sense. For
independent inputs, all the component functions are mutually
orthogonal, and the decomposition is unique. The determination
of a component function, for example f;(X;), individually (by
minimizing L = E[(f1X) — f(X;))?]) or simultaneously with other
component functions by least-squares regression will give the
same answer within the data error. For independent inputs, a
unique decomposition of the unconditional variance V(Y) for
Y, parallel to the above decomposition of f(x) can be obtained:?

n 2n—1
V(Y) = ZVI + 2 Vz] + o + V12...n = 2 ij
i=1 1<i<j<n j=1
)
with
ij = Var(fpl_(ij)) (10)
and
2] 2]
1= v,V = D s, (11)
j=1 j=1

The importance rank of the inputs or subsets of inputs can be
simply determined by comparing the magnitudes of the sensitiv-
ity indices.

Using this parallel relation between the V(Y) and f(x)
decompositions, two methodological approaches for estimating
sensitivity indices, classical and meta-modeling, have been
developed. The classical approach®®~!! directly calculates the
conditional variances. Specific Monte Carlo samples for the
inputs x (e.g., FAST samples,'' Sobol samples,’ and replicated
Latin Hypercube samples'?) are generated, and the correspond-
ing output values y = f(x) are calculated to estimate the
sensitivity indices. In the meta-modeling approach,>'*~!> an
effective model of the original system is constructed first, and
all the sensitivity indices and the mapping of Y are based on
this meta-model. The procedure calculates either the conditional
variances or the variances of f,(X,). The meta-modeling
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approach is often more efficient than the classical alternative
that requires a large number of specific samples, and cannot
analyze laboratory or field data where sampling is often
uncontrolled.

When the inputs are correlated, some ambiguities arise in
the definitions of sensitivity indices given by the variance-based
methods. The conditional variances will generally depend on
the existence of correlations in the input variables. Adopting
the same definition of sensitivity indices given by the variance-
based methods for a given subset of inputs can lead to
contributions from other correlated inputs contaminating the
result.” This problem was observed by Oakley and O’Hagan!
who demonstrated that V(Y) cannot be decomposed into a sum
of squares as given in eq 9 and that the V,,’s do not partition
V(Y) for systems possessing a correlated input probability
distribution. The sum of all sensitivity indices adopting the
definitions given by the variance-based methods may not equal
unity. Therefore, the resultant relative importance of the inputs
is questionable based on comparing the magnitudes of the
sensitivity indices. For a system with a correlated input
probability distribution, a single sensitivity index cannot fully
describe the input contributions.

Here we introduce a new unified global sensitivity analysis
framework for systems whose input probability distribution has
independent and/or correlated variables. The new treatment is
based on covariance decomposition of the unconditional variance
of the output. This analysis technique can be applied to
mathematical models, as well as measured laboratory and field
data. The definition of sensitivity indices given by the variance-
based methods for systems with independent inputs is a special
case of the new unified treatment. When the input probability
distribution is correlated, three sensitivity indices Sp/, Sfjj and
S,b,j are defined to respectively give a full description of the total,
structural (reflecting the system structure ¥ = f(X)), and
correlative (reflecting the correlated input probability distribu-
tion) contributions for an input or a subset of inputs X,. We
refer to this technique as the structural and correlative sensitivity
analysis (SCSA) method. When the inputs are independent, the
SCSA indices reduce to the single index Spj, consistent with
the variance-based methods. In this paper, the estimation of
sensitivity indices is based on the meta-modeling approach,
specifically on the random sampling-high dimensional model
representation (RS-HDMR) expansion,'’”!? whose component
functions are approximated by cubic B splines.? The expansion
coefficients are extracted from a given set of input—output data
by a backfitting procedure utilizing the statistical F-test for
identifying the significant component functions.?!

This paper is organized as follows. Section 2 discusses
methodology including the covariance decomposition and
definition of the SCSA sensitivity indices along with the
estimation of the sensitivity indices utilizing RS-HDMR. Section
3 illustrates three applications of the SCSA method: (1) a linear
model whose input probability density function (pdf) is a joint
normal distribution with or without correlation, (2) a nonlinear
model used recently by Storlie et al.'’ to provide a comparison
of the RS-HDMR method with other existing meta-modeling
methods, and (3) ionospheric electron density characteristics
assessed by measured ionosonde data. Section 4 presents
conclusions.

2. Methodology

2.1. Covariance Decomposition of the Unconditional Vari-
ance V(Y). Suppose that y can be approximated by n, (< 2" —
1) nonconstant component functions in eq 5:
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nl’

V=hht Xh&) e (12)
j=1

where £ ~ N(0, 0®) is random error. When all the Jps are
determined from a set of input—output data by an unbiased
method (e.g., least-squares regression), the difference between
y and its approximation fo + Zfe f,, is orthogonal to the subspace
spanned by all of the f,’s j = 1, 2, ..., m,) in the Hilbert space,??
ie.,

o —f,— Zﬁ,f,fpk) =(e.f,) = 0.(k = 1,2,...m)
il
: (13)

where (+,*) denotes the inner product defined as
(h(x),8(x)) = an w(x)h(x)g(x) dx (14)

with w(x) being the pdf of X, and €, being the input domain.
Using eq 13 and E(f,(X,)) = 0, the unconditional variance
of the output V(Y¥) can be decomposed as the sum of all the

. P
covariances, Cov(ﬁ,,., Y), and the averaged square error &

V() =E(Y—EW)’] = [, w0 — )" dx
=0~ foy —f) = (Xfy, T ey —f)
j=1

= Y Cov(f,,V) + (e,¢)
=1 '

ny, n, o
=D Var(f,) + Cov(f,, >, fi)l + ¢
j=1 k=147

s)

If &% is sufficiently small compared to V(Y) (i.e., fo + Zj’?glﬂ,J
is a good approximation for f(x)), the sum of the covariances
forms a good decomposition of V(Y). When the f,’s are all of
the component functions in eq 5, then ¢ = 0, and consequently

¢’ = 0. In this case V(Y) is exactly partitioned by all the
Cov(fp/, Y)’s.

A key difference between the covariance decomposition of
V(Y) in eq 15 from the variance decomposition of V(Y) in eq 9
is that the terms Cov(f,, ¥) can be negative. The covariance
Cov(ﬁ,/, Y) is the total contribution of ﬁ)j composed of its structure
piece Var(f,) (which is always positive, reflecting f,’s contribu-
tion in the system structure ¥ = f(X)) and a correlation piece
Cov(ﬁ,j,Z =1, i=if,) (Which can be positive or negative, reflecting
the influence of the interaction between f,, and other component
functions through the correlated input probability distribution).
Fixing some inputs may influence the distributions of other
inputs, and the total effect can decrease or increase the variance
of the output, which yields a positive or negative Cov(f,, Y).

The covariance Cov(h, Y) for a function 2(0) will be positive
if 4 is a model approximating Y, i.e.,

y=h(x)+ e (16)
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and A(x) is determined by a unbiased method (e.g., least-squares
regression). Then

Cov(h,Y) = Cov(h,h + &) = Var(h) >0 (17)
For example, h(X) = f(X;). In this case, we have
Cov[fi(X), Y] = Var[f(X)] =V, (18)

which is simply the conditional variance used in eq 2. Note
that, for a probability distribution with correlated inputs, the
resultant f;(X;) will generally depend on whether it is determined
individually (using eq 16) or simultaneously (using eq 12), and
the corresponding Cov[fi(X;), Y] will also be different. The
former covariance is always positive and is equal to V;, but the
latter covariance can be negative and represents the total
contribution of fi(X;), separate from the other f,,j’s.

The covariance decomposition of V(Y) given in eq 15 is
general, while the variance decomposition given in eq 9 can be
considered as a special case for systems with independent inputs
and n, = 2" — 1. For independent inputs all of the f,’s are mutually
orthogonal, i.e., Cov(fpj,Z 1 efp) = 0, and Cov(fpj, Y)= Var(fpj).
When the f,’s include all of the component functions in eq 5,
¢ = 0. As mentioned above, for independent inputs, either
individual or simultaneous determination of the component
functions by least-squares regression gives the same results,
which implies that Var(f,) = V,,. Then eq 15 reduces to eq 9.

For systems with correlated inputs, a single sensitivity index
cannot unambiguously describe the contributions of a single or
a subset of inputs X,,. On the basis of eq 15, three sensitivity
indices are defined:

s, = Cov(f,, NIV(Y) (19)

S = Var(f, )/ V(Y) (20)

sy, = Cov(f,, k % S,)V) 1)
=1,k=j

which respectively represent the fotal, structural, and correlative
contributions for X,,(j = 1, 2, ..., n,) with

S =85+ 8 (22)

A similar treatment has been considered recently where the
conditional variance V; was decomposed as®®

Vo=V @3

with VY and V¢ referring to the uncorrelated and correlated
variations for X;. Xu and Gertner calculated these quantities for
a linear model y = 8y + =K ,8x; + ¢. The SCSA treatment is
distinct in that the decomposition is for all the covariances,
Cov(f;, Y), Cov(f;, Y), and so forth, and is not based on a linear
model.

.
When ¢” is small, we have
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n, ny,

Zspj = ECOV(fj, IV(Y) = V(Y)IV(Y) = 1
j=1 j=1

(24)

The magnitudes of S,, S35, and S (j = 1,2, ..., n,) all need to
be considered in order to quantitatively determine the relative
importance of the inputs acting either independently or col-
lectively. The deviation of the sum over all S, from unity can
be used to evaluate the quality of the sensitivity analysis. When
all inputs are independent and the f,,’s are mutually orthogonal,
then Sb 0, and SI, S;Z, which is the sensitivity index given
by the variance-based methods.

2.2. Estimation of Sensitivity Indices. As the sensitivity
indices are related to the covariance of the component functions,
fpl.’s, with the output Y, the first step is the determination of the
Jps from a set of input—output data by a suitable regression
method. A large body of techniques for carrying out regression
analysis has been pursued.?'>*? The advanced development of
regression methods continues to be an area of active research,
and new techniques have been considered for robust regression.
Storlie and Helton review some of the traditional nonparametric
regression procedures and other methods.!>!® The present work
does not compare the regression techniques, and any proper
regression method can be used for the determination of the f,’s
In this paper, RS-HDMR!"~!° combined with an F-test is
employed. As illustrated in section 3, RS-HDMR combined with
an F-test proved to be quite adequate to apply the new SCSA
tools.

2.2.1. RS-HDMR. HDMR uses a general approach to
optimally construct the component functions in eq 5 sequentially
from lower to higher order, such that the lower order contribu-
tions are maximized and the higher order contributions are
minimized. In this process, the high order component functions
(if they exist) are decomposed and portions are included in the
low order ones. Often utilizing only the first few low-order
component functions gives a satisfactory approximation for f{x)
in practical applications. Moreover, distinct, but formally
equivalent, HDMR expansions (e.g., Cut-HDMR, RS-HDMR)
with the same structure as eq 5 can be constructed to meet
various practical requirements.’

Cut-HDMR is useful in cases where the sampling may be
controlled in an ordered fashion with the associated component
functions constructed from numerical data tables along lines,
planes, and other higher dimensional subvolumes with respect
to a reference point in the input space. RS-HDMR results in
the same form as that given in eqs 6—8 with the sampling of x
following any given pdf to determine the component functions.
Smoothing spline ANOV A models®*?” and Generalized additive
models?® have similar formulas and treatments. RS-HDMR is
especially useful for handling laboratory or field data where
the sampling is often uncontrolled.

To reduce the sampling effort, the RS-HDMR component
functions are approximated by expansions in terms of some
suitable basis functions (e.g., polynomials, splines, etc.).'*!? In
this paper, cubic B spline functions B;(x) are used.?’ The first-,
second-, and third-order RS-HDMR component functions, fi(x;),
Sii(xi x;), and fi(x;, x;, xi), respectively, can be approximately
expanded as

m+1

£y = Y, alB,(x) (25)

r=—1
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m+1  m+1

fex) = > X, BB (x)B,(x) (26)

p=—1 g=—1

m+1l m+l m+l

Jiulxi % ) = PIDIDY VB (6)B (B (x,)

p=—1 g=—1 r=—1

27)

where m is the number of knots, with af, 84, and y¥, being

constant coefficients that need to be determined.

2.2.2. Determination of the RS-HDMR Component Func-
tions by Backfitting. After the RS-HDMR component functions
are approximated by suitable basis functions, the resultant
expression in eq 5 is an additive model.?! In this case, the
additive model builds on the ability to generate approximations
from a set of low-dimensional functions combined with a
statistical F-test, to provide confidence bands for the predicted
functions, and so forth, and thereby determine which RS-HDMR
component functions are retained.

The RS-HDMR component functions can be determined
sequentially or simultaneously by least-squares regression.
Backfitting may be used for high-dimensional systems. Forward
or backward stepwise selection may be used to search for the
significant component functions. The choice of algorithm
depends on the particular system. For example, if the system
has independent inputs, then sequential determination will be
most efficient because the process does not depend on the order
of the inputs and in each step only one component function
needs to be determined. For correlated inputs, sequential
determination is improper because the process depends on the
order of the inputs. In this case, either simultaneous or
backfitting determinations can be used, and they give the same
result. However, backfitting is preferred for high-dimension
systems because each iteration of backfitting only treats one
component function whose dimension is always low.

In this work the backfitting procedure was used to determine
the component functions, whereby a new estimate of f, is
obtained by solving the following equations using least-squares
regression:

-y £, = 60,

J=1=k

(s=1,2,..,N)
(28)

Here, s denotes the sth sample, and N is the total number of
samples. This procedure is performed for each component
function f,, in turn, using the current estimates of the f,’s to
calculate the left-hand side of eq 28. This process continues
until the estimated f,’s converge.!

Suppose that RSS; represents the residual sum-of-squares for
the least-squares regression of a large model fo + p- lfp with
pi unknown parameters (e.g., the coefficients o, 5}, ypq, in the
spline function expansions of eqs 25 27) and RSSy is the same
quantity for a small model fo + Zj— j«f,, nested in the large
model, but with py unknown parameters The F statistic

B (RSS, — RSS)/(p, — py)
RSS,/(N = p)

(29)

has an F distribution with (p; — p¢) and (N — p,) degrees of
freedom. If the observed F given by eq 29 is larger than the



6026 J. Phys. Chem. A, Vol. 114, No. 19, 2010

tabulated value of the F distribution with (p; — po) and (N —
p1) degrees of freedom at the 99% confidence level (or other
desired confidence level), then f, is significant and should be
included in the approximation. Otherwise, f;, can be excluded.
Other means (e.g., Ridge regression, Lasso, MARS, ACOSSO,
etc.)'>?! for data fitting can be used as well.

The component functions are determined starting from first
order. We may start by comparing the two models,

r—1
y=fot+ L), r=12..n) (30)
i=1

Y=l DS 31)
i=1

to identify the significance of f,(x,). In eq 30, r = 1 corresponds
to y = fo, and remaining functions in eqs 30 and 31 are
determined by backfitting. Either forward selection (starting for
fo) or backward selection (starting for f, + Zifi(x;)) for
determining the significant first-order component functions can
be used. The determination of the second-order component
functions follows the same procedure. The only difference is
that, for convenience, the identified significant first-order
component functions are included in the small and large models
without updating through backfitting. Similarly, the third-order
component functions are determined with the identified signifi-
cant first- and second-order component functions included in
the small and large models without updating through backfitting.

2.2.3. Determination of the Sensitivity Indices. After all n,,
significant component functions are identified, i.e.,

Vll,

v=fot 2K, (32)
=1

then the estimation of Spj, Sf,j., and Sﬁ/ is straightforward:

N N

S, = Cov(f,, IV(Y) = D.f,x)0" = 3/ 2,6 = 3’
s=1 s=1

(33)

N N
Sy = Var(f,/V(¥) = 3 (f, 7)) 2,7 = 37
s=1 s=1
(34)

=5 —5 (35)

Pj Pj Pj

where y is the average value of the y*’s. The total sensitivity
indices Sy;, S%;, and S%; also can be calculated by adding together
all the sensitivity indices containing X;. When Z;-’ng,,j ~ 1, the
resultant total sensitivity indices can be considered as reliable.

3. Examples

In this section,the new SCSA treatment of global sensitivity
analysis is illustrated by linear and nonlinear simulated models
as well as a nonlinear ionospheric system based on field data.
The simulated linear model has five input variables, which have
either an independent or correlated multivariate normal distribu-
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tion. Since the linear function and its input pdf are known, it is
possible to explicitly establish the relationship between the
sensitivity indices S;, S¢, and S? and the system structure as well
as the parameters of the input pdf. This example is helpful for
understanding the meaning of the new defined sensitivity indices
and their advantages compared to that given by the variance-
based methods. The nonlinear simulation model has three inputs
and was used by Storlie, et al.'> This model enables comparing
RS-HDMR with other existing meta-models. The third illustra-
tion is for the analysis of measure field data involving
characterization of the ionospheric electron density. Since the
inputs were determined from ground-based ionosonde measure-
ments, they represent neither controlled nor independent sam-
pling. The pdf is correlated, and it is not explicitly known.
Nevertheless, the SCSA method provides a clear identification
of the important inputs.

3.1. Simulated Model: A Linear Function with a Multi-
variate Normal Distribution for Inputs. A simple linear
mathematical model is used to examine how the sensitivity
indices S¢ and S? reflect the structural and correlative contribu-
tions of the inputs to V(Y). The model has five inputs: X =
(X1, X2, X3, X4, X5)T. The pdf for X is a multivariate normal
distribution

(50— W=~ )
(36)

wXx) = —————ex
T

where u = (w1, U, Us, Us, Us) s the expected value of X, X is
the covariance matrix of X, i.e., the (i, j)th entry of X is

0; = Cov(X,, X)) 37

which quantifies the sampling correlations between X; and X,
and Xl is the determinant of X. Since X is given, the independent
or correlated sampling of the inputs is known. The relationship
between S¢, S? and the system structure as well as X can be
established. Three cases are considered below.

3.1.1. Case 1: Equal Structural Contributions and Inde-
pendent Sampling of the Inputs. First consider the simple case
where the output y is a sum of all x;’s with equal contributions

y=xtxtxtx, txte (38)

In this case, ; = 0.5 (i = 1,2, ..., 5), and X is the identity
matrix Is (i.e., the inputs are sampled independently), and each
input has an equal structural contribution to the output. The
error € ~ N(0, 0) is a random variable with signal-to-noise ratio
SNR = Var(f(X))/o> = 100. The confidence intervals (CI) of
the sensitivity indices are determined by the bootstrap method.!>?!
Following the work of Storlie et al.,'> 100 sets of random
samples for x (each has the size N = 300) were generated
according to the pdf (the pdf w(x) has an infinite domain for x;,
but there is little possibility for obtaining a large value of x;
and the generated data are distributed within a small range
around y;) and the corresponding values of y are calculated.
Then, random error ¢ is added. In the construction of the RS-
HDMR component functions, all of the input x;’s are normalized
(0 = x; = 1). The expansion coefficients o, 7,,... of the RS-
HDMR component functions are determined by the backfitting
procedure described above. Only the first-order RS-HDMR
expansion is constructed because the function is linear. The
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TABLE 1: Sensitivity Indices S;, S¢, S? for the Linear
System Case 1
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TABLE 2: Sensitivity Indices S;, S, and S? for the Linear
System Case 2

eq 39 eq 40 eq 39 eq 40
input S¢ Y4 S; ViIV(Y) input S¢ Y4 S; ViIV(Y)
X 0.19 £0.04 001 £0.04 021 £0.04 0.23 £0.08 X 0.13 £0.02 0.11 £0.02 024 £0.03 046 £ 0.08
X> 0.19 £ 0.04 001 £0.04 020 =£0.04 0.22=+0.07 X 0.13 £0.02 0.11 £0.02 025=£0.03 047 £0.08
X; 0.19 £0.04 0.00 £0.05 0.19 £0.05 021 £ 0.08 X3 0.13 £0.03 0.06 £0.03 0.19 £0.03 0.29 £ 0.08
Xy 0.20 £ 0.04 0.01 £0.04 020 =£0.04 0.22=+0.07 Xy 0.13 £0.02 0.03£0.04 0.16+0.04 021 +£0.09
Xs 0.19 £ 0.04 0.00 £0.05 0.19 £0.05 0.20 £ 0.08 Xs 0.13 £0.02 0.03£0.04 0.15+£0.04 0.20+£ 0.09
sum 097 £0.13 0.02+£0.13 099 £0.00 1.08+£0.13 sum  0.65 £0.07 035+£008 099 +000 1.64+0.17

component functions fi(x;)’s are determined either simultaneously
or individually:

5
y=fot DA (39)

i=1
y=/fo T flx), (i =12..,5) (40)

The sensitivity indexes S;, S¢, and S? are calculated using the
fi(x;)’s obtained by eq 39. The S; obtained from eq 40
corresponds to V/V(Y) given by the variance-based methods (see
eq 18). The average value S and standard error se(S) of the
sensitivity indices for the 100 data sets were calculated. Under
the assumption that the error is normally distributed, the 95%
CI for S is represented by S + 1.96se(S),'>?! and given in Table
1.

Since the inputs are independent and have an equal structural
contribution, we should have S; = $¢ = 0.2 and S? = 0 for all
i. For independent inputs, the SCSA method and the variance-
based methods should give the same result. The values of S;,
S¢, S, and V/V(Y) in Table 1 are very close to the expected
outcomes for both the SCSA method and the variance-based
methods, but the results given by the variance-based methods
show somewhat more error.

The estimated bounds of CI (i.e., 1.96se(S)) for the individual
sensitivity indices S¢, S?, and S; range from £0.04 to 4-0.05,
but the estimated bounds of CI for >2,5¢, >2,S?, and Y-S,
are £0.13, &£ 0.13, and £0.00, respectively. This behavior can
be understood as the sensitivity indices, for example the S¢’s,
are random variables (determined from 100 randomly sampled
sets) and their sum (2=1S¢) is a new random variable with?

5

Var(

S = D Var(S) +2 Y, Cov(S}, s

1
i=1 i=1 1<igj<5

(41)
Since the S{’s are independent, i.e., Cov(SY, Sf) = 0, then

5

Var( ), 59 = Y Var(s%) (42)

i=1 i=1

The standard error se(S) is an estimate of [Var(S)]"? from the
100 data sets. Hence, 1.96se(3-,5¢) > 1.96se(S%). Similar results
can be obtained for S?’s. However, the S;’s are not independent
and satisfy the restriction

5
s =1 (43)
i=1

Then the second set of terms Cov(S;, S;)’s in eq 41 have
contributions. Suppose S; has a positive error, then there must
be another S; having a negative error because the sum of S;’s
should be 1. Thus the error for Y2_,S; is expected to be smaller
than the error of either S; or S; because the positive and negative
errors cancel each other. This makes the estimated bound of CI
1.96se(X-1S;) < 0.01. A similar discussion applies to the V/
V(Y)’s and other analogous results below.

3.1.2. Case 2: Equal Structural Contributions and Cor-
related Sampling of the Inputs. All conditions are the same as
in Case 1 except that the covariance matrix is now

1.0 0.6 02 0.0 0.0
0.6 1.0 02 0.0 0.0
¥ =[02 02 1.0 00 00 (a4
0.0 0.0 0.0 1.0 0.2
0.0 0.0 0.0 02 1.0

In this case, the inputs X;’s are correlated because some off-
diagonal elements, oy, are nonzero. For example, X; is correlated
with X; and X; (01, = 0.6 and o;35 = 0.2). The sum of the
nonzero off-diagonal elements for each X; (e.g., o1, + 013 =
0.8) reflects the correlation of X; with the other inputs X;’s. The
corresponding sensitivity indexes S;, S¢, and S?, and V/V(Y) are
given in Table 2.

A significant difference between the SCSA method and the
variance-based methods occurs for this case with a correlated
input pdf. The S{’s obtained by the SCSA method are equal,
which is consistent with the contribution arising from the model
structure. Similarly, the $?’s obtained by the SCSA method show
that the inputs can be divided into three groups: (Xi, X»), (X3),
and (X4, Xs). The ratios of S? for the three groups are ~4:2:1,
which reflects the ratios of the values of their respective sums
ngii)(o,j), 0.8, 0.4, and 0.2. The correlative contribution of the
inputs caused by the correlated pdf is correctly identified. The
values Y,;8¢ = 0.65 4 0.07 and >;S? = 0.35 % 0.08 reveals that
the total structural and correlative contributions are both
significant. This information cannot be obtained by variance-
based methods. Moreover, X.;S; is equal to 0.99, which implies
that the sensitivity analysis provided by the SCSA method is
reliable for this simple linear model. In contrast, the results given
by the variance-based methods mix together the structural and
correlative contributions of the inputs, and the information given
by Vi/V(Y) can be misleading. According to the values of V/
V(Y), the inputs X, X, are the most important, and the inputs
X4, X5 are the least important. This conclusion is misleading
because V1/V(Y) contains a large (o1, = 0.6) contribution from
X5 and a small (0,3 = 0.2) contribution from X;. Similarly, V,/
V(Y) contains a large contribution from X; and a small
contribution from X;. For X; and X5, each V/V(Y)(i = 4,5)
contains a small (045 = 054 = 0.2) contribution from the other.



6028 J. Phys. Chem. A, Vol. 114, No. 19, 2010

TABLE 3: Sensitivity Indices S;, S, and S? for the Linear
System Case 3

Li et al.

TABLE 4: Sensitivity Indices for the Nonlinear System with
a Uniform Distribution

eq 39 eq 40 input S¢ or S§ NEURY S; or S; Sri

input N SP S; ViIV(Y) X, 0.31 £ 0.06 0.01 £0.05 0.31+0.06 0.51+£0.07

X, 028 + 0.04 016+ 0.02 044 + 004 0.0 + 0.06 Xo 0.44 + 0.09 0.00£0.05 0.44+0.07 044 +£0.07
X; 0.04 £ 0.03 0.01 £0.01 0.04 £0.04 0.24 £0.05

X5 0.17 £ 0.03 0.16 £0.02 0.33 £0.03 0.64 = 0.06 X X 021 +005 —00l+005 020005

X; 0.10 £ 0.02 0.06 £0.02 0.16 £0.03 0.27 &= 0.08 X, X3) ’ ’ ’ ’ ’ ’

X, 0.04 £ 0.03 0.00 £0.03 0.04 £0.03 0.06 = 0.05

Xs 002£003 000£001 002£002 0.05=+004 Gaussian Process with Maximum Likelihood Estimation (MLE

sum 0.61 £0.05 038 +0.05 099 +0.00 1.71 £0.13

This makes the sum of all V/V(Y) significantly larger than unity.
Actually, all of the X;’s have the same structural contribution
upon the output. It is impossible to judge whether V/V(Y)
contains contributions from other correlated inputs X;’s. There-
fore, it is difficult to reliably rank the input importance order
by simply comparing the magnitudes of V/V(Y). Even though
the particular approaches to the variance-based methods are
different,' 3 they should give S; values close to V;/V(Y); all such
methods cannot discern the structural and correlative contributions.

3.1.3. Case 3: Distinct Structural Contributions and Cor-
related Sampling of the Inputs. All of the Case 3 conditions
are the same as for Case 2 except that

y=5x +4x, +3x; + 2x, + x5 + ¢ (45)

Now the inputs have different structural contributions to Y and
the sampling is correlated. The calculated sensitivity indexes
S;, 8¢, and S? and V/V(Y) are given in Table 3.

The error in the sensitivity indices is related in a complicated
fashion to the error in the estimating the component functions
fi(x;) and the presence of input covariances o;;. The coefficients
of each x; in the function are different along with finite correlated
input samples, resulting in somewhat larger errors in the
sensitivity indices than for the prior cases. However, the
magnitudes of the S{’s qualitatively reflect the influence of
the coefficient of each x; in the model structure even though
the ratios of S{’s do not exactly correspond to 5:4:3:2:1. The
magnitudes of S’s can still be separated into the same three
groups as in Case 2 reflecting the structure in =. Compared to
the V/V(Y)’s obtained by the variance-based methods, the SCSA
method yields much more information and a clear view of the
roles played by the inputs and their correlations.

As this model is a linear function and its pdf is a multivariate
normal distribution, the relationship between S;, S¢, S? and the
function f(x) structure along with the pdf can be readily
examined. For more complex systems, this relation will likely
not be so simple, but the indices S;, S¢, S? should still correctly
represent the structural and correlative contributions of the inputs
to the variance of the output.

3.2. Simulated Model: A Nonlinear Function with Uni-
form and Multivariate Normal Distributions of Inputs. To
compare the RS-HDMR method with other existing meta-
models, a nonlinear function with three inputs

fix) = sinQQax, — ) + 7 sin’(2wx, — ) +
0.1Q2mx, — )" sinQx, — ) + & (46)

is used for illustration. Storlie, et al.'® calculated the total
sensitivity indices Sz; for this model with independent sampling
using 10 different meta-models. Five meta-models, Adaptive
COmponent Selection and Smoothing Operator (ACOSSO),

GP), Gaussian Process with MLE and Bayes estimates and
Bayesian credible sets for S7; (MLE BGP), Recursive Partition-
ing (RPART), and Multivariate Adaptive Regression Splines
(MARS), gave better results than the other five methods. This
nonlinear system was also treated by RS-HDMR with indepen-
dent and correlated sampling. For comparison, we used the same
signal-to-noise ratio SNR = Var(f(x))/o> = 55 used by Storlie.

3.2.1. Case 1: Independent Sampling with a Uniform
Distribution. We first sampled the data with a uniform distribu-
tion, and 100 sets of random samples for x, each of the size N
= 300, were generated following the procedure of Storlie et
al.'’> RS-HDMR was used with these data sets. The functions
filxp(@ = 1,2, 3) and fi3(x;, x3) were identified to be significant.
For independent sampling, the SCSA method and the variance-
based methods should produce the same results, i.e., our results
for S7; should coincide with Storlie’s results. The outcome of
the SCSA method is given in Table 4.

Since the inputs are independent, we should have S? = S/ =
0 and S; = S, S;j = Sj. The true values of the total sensitivity
indices are known'® to be Sy = 0.55, Sy = 0.45, Si3 = 0.24.
Since S; + S, + 53 + Si13 = 0.99 £ 0.03 is close to unity, we
can calculate the total sensitivity indices as

Sy =58 +583 Sp=25., Sz=5+S8, &7

which are also given in Table 4. The results in Table 4 are quite
satisfactory.

Storlie et al.'® calculated the root mean squared error (RMSE)
R; for the resultant S;; from the 100 data sets as

100
_ 1 " _ g \2
R, 00 ; (S = S (48)

where S%) denotes the value for the rth data set, and Sy; is the
known true value. The standard deviation sg, for R; was also
calculated by

%= 35 if [y — S’ — R (49)
R; 2Rz 99 o Ti Ti i

R; and sg, were used to compare the accuracy of the 10 methods
in Storlie’s work. Here we give the values of R; and s, for RS-
HDMR and compare them with the five best meta-models used
by Storlie et al. Table 5 shows that RS-HDMR gives results
comparable to these methods.

3.2.2. Case 2: Correlated Sampling with a Multivariate
Normal Distribution. The above results show the reliability of
the SCSA method. The advantage of the SCSA method is that
it can treat correlated sampling. Here, a joint multinormal
distribution of inputs
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1.0 0.6 0.0
¥ = [06 10 00

50
0.0 0.0 1.0 0

is used with the model in eq 46. Figure 1 gives scatter plots of
output Y against the inputs X; for (a) multinormal and (b)
uniform distributions.

For the multinormal distribution, the values of the X;’s are
concentrated in the center over the range (0.2, 0.8). In this
region, the relation between Y and X, X3 is quite flat, and the
corresponding sensitivity indices should be small. In contrast,
the contribution of the X;’s shows considerable variation in the
uniform distribution. The resultant sensitivity indices for the
multinormal distribution are given in Table 6, consistent with
the scatter plots. The sensitivity indices of X;, X5 and (X, X3)
for the multinormal distribution are much smaller than those
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TABLE 6: Sensitivity Indices for the Nonlinear System with
a Multinormal Distribution

input S¢ or S§ S? or S% S; or S; St
X 0.10+£0.06 —0.03£0.06 0.07+0.04 0.08+0.06
X 091 £0.11 —0.04 £0.07 0.87£0.07 0.87+0.07
X3 0.01 £0.02 0.00+0.02 0.01 £0.02 0.03 £0.03
X1, X3) 0.03£0.03 —0.02+£0.04 0.02+0.03

for the uniform distribution, and X, has a dominant contribution
to the variance of the output.

Table 6 also correctly shows that St

~
~

S5

and S§ ~ 0.

Similarly, since S; + S, + S5 + Si13 = 0.96 £ 0.04 is close to
unity, then the Sy;’s should be reliable. Therefore, the resultant
sensitivity indices correctly identify the important contributions
of the inputs for the multinormal distribution data.

3.3. Application to Measured Ionosonde Field Data. The
SCSA method has also been utilized for treating ionosonde data
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Figure 1. Scatter plots of output y against inputs x; for (a) multinormal and (b) uniform distribution data.
TABLE 5: Comparison between RS-HDMR and the Five Meta-Models Used by Storlie et al.

RS-HDMR ACOSSO MLE GP MLE BGP RPART MARS
R\(sg,) 0.06(0.03) 0.06(0.00) 0.08(0.02) 0.05(0.01) 0.07(0.01) 0.10(0.04)
Rx(sr,) 0.04(0.02) 0.05(0.00) 0.08(0.01) 0.12(0.02) 0.08(0.01) 0.09(0.04)
R3(sg,) 0.02(0.02) 0.07(0.00) 0.09(0.02) 0.04(0.01) 0.13(0.01) 0.11(0.05)
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Figure 2. The measured foE data at 12:00 UT from years 1957—1987. The yearly variations are superimposed on the 11 year solar cycle.
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Figure 3. The correlation of the measured ionosonde field data for some of the input variables.

in Huancayo, Peru. A brief description of the physics is given
here, and more details can be found elsewhere.*® The ionosonde
transmits radio wave signals that are reflected when the
transmitted frequency is equal to the local plasma frequency in
the ionosphere. Electron densities as a function of altitude and
for a given time are calculated from these returned frequencies.
The ionospheric electron density is characterized by the critical
frequencies returned from the peak density in the E-region (foE)
and the peak density in the F-region (foF2) of the ionosphere.
JoE and foF2 vary periodically in time. Figure 2 gives the
measured data for foE at 12:00 universal time (UT) for the years
1957—1987.

The critical frequencies foE and foF2 follow regular yearly
variations superimposed over the 11 year solar cycle. The
ionosphere exhibits much greater day-to-night variations within
a 24 h period than it does at the same hour from day-to-day.
The following analysis is for the specific hour 12 UT. The
critical frequencies foE and foF2 may also be dependent on the
measured geophysical parameters Fyo7, Kp, and Dst. Here Fo7
represents the 10.7 cm solar flux index which is a surrogate for
solar output: high values of F,; occur during a solar maximum,
and low values occur during a solar minimum. Kp is a 3-hourly
index of the solar particle radiation derived from geomagnetic
field variations measured at 13 subauroral locations. Dst is also
an index based on the geomagnetic field, which is derived from
mid- and low-latitude sites and reflects occurrences of magnetic
storms. Therefore, the five input variables are “year” (consider-
ing a 11 year period, which is transformed to year = (year —
1957 mod 11)), “day”, Fio7, Kp, and Dst. Since the inputs were
determined from ground-based ionosonde measurements, their
sampling is not controlled, the variables are likely not inde-
pendent, and the input pdf is not explicitly known. Figure 3
shows the correlation among some of the inputs.

The following analysis presents illustrative results for the
output foE. An RS-HDMR meta-model was constructed from

TABLE 7: The Relative Errors of Different Order
RS-HDMR Approximations for Training and Testing Data

data portion

training data testing data

relative
error (%) first order second order first order second order
1 0.3090 0.3177 0.2793 0.2874
5 0.9125 0.9243 0.8617 0.8611
10 0.9925 0.9928 0.9808 0.9800
20 0.9972 0.9972 0.9962 0.9964

the first 4000 points of 8694 measured data samples (training
data), and another set of 4694 points are used for testing. To
treat all input variables in a common fashion, they are
normalized, ie., 0 < x; < 1(i =1, 2, ..., 5). The RS-HDMR
component functions are approximated by cubic B splines. The
backfitting algorithm was used to determine the expansion
coefficients (i.e., o/, ,’{q ...) for the component functions, and
the F-test was used to determine which component functions
should be included. With a 99% confidence level, four fi(x;)
and two f;(x;, x;) were identified as significant. A second-order
RS-HDMR expansion with these component functions was
constructed. The R? of the meta-model prediction is 0.93. The
average relative errors for the training and testing data are 3.38%
and 4.22%, respectively. The data portion with relative error
less than a given value is shown in Table 7, and a comparison
is shown in Figure 4 between the measured yearly variation of
JfoE and the second-order RS-HDMR approximation.

The results in Table 7 show that, for the second-order RS-
HDMR approximation, more than 90% and 99% of the training
data have relative errors of less than 5% and 10%, respectively.
The accuracy for testing data is similar to training data, i.e.,
more than 86% and 98% of the testing data have relative errors
of less than 5% and 10%, respectively. In Figure 4 the second-
order RS-HDMR approximation constructed from the first ~14
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TABLE 8: The First-Order Sensitivity Indices Obtained
from the SCSA Method and the Variance-Based Method for
Measured Ionosonde Data (foE)

the SCSA method
input relative import. S¢ Y4 S; ViIV(Y)

day (X») 1 0.57 0.00 057 058
Fio7 (X3) 2 0.26 0.04 030 036
year (X) 3 0.01 0.04 006 029
Dst (Xs) 4 000 —001 —0.01 0.6
Kp (X2) a 0.02
sum 0.84 0.08 092 131

“ Insignificant.
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Figure 5. The four significant fi(x;).

f1,2(x1,%2)

Figure 6. The significant function fj »(xy, x2).

TABLE 9: The Second-Order Sensitivity Indices for the
Measured Ionosonde Data (foE)

inputs relative import.” Sii Sk Sij
(X1, X2) 1 0.01 0.01 0.02
(X>, X3) 2 0.00 —0.02 —0.01
xS 0.92
28+ 2S; 0.93

¢ Determined from S.

TABLE 10: The Totals Ensitivity Indices S%;, S}, S7; for the
Measured Ionosonde Data (foE)

1
1970 1972 1974 1976 1978 1980 1982 1984 1986 1988
year

Figure 4. The comparison of the measured yearly variation of foE
and the RS-HDMR approximation.

years of measured data satisfactorily predicts foE values for the
following ~16 years.

The sensitivity indices S;, S¢, S? obtained by the SCSA method
from the resultant RS-HDMR component functions along with
Vi/V(Y) obtained by the variance-based methods are given in
Table 8. Since the probability distribution is correlated, the
coefficients S? are not negligible for the measured ionosonde
field data. The largest values of S? are for Fo4(X3) and “year”
(X1), which is consistent with Figure 3 already showing their
correlation. All of the fi(X;)’s are identified to be significant
except for fy(Xy) (Kp). From S; and S, the most influential input
is “day” (X,), followed by Fo7(X3), then “year” (X;), and the
least influential input is Dst(Xs). Vi/V(Y) gives the same order,
but it does not distinguish the structural and correlative
contributions of the inputs.

The significant second-order sensitivity indices are given in
Table 9, and they are small. Since the sum X.S; + >.S; = 0.93

input relative import. S%; Shi Sri
day (X,) 1 0.58 —0.00 0.58
Fio7 (X3) 2 0.26 0.03 0.29
year (X)) 3 0.02 0.06 0.08
Dst (Xs) 4 0.00 —0.01 —0.01

is close to unity, the sensitivity analysis given by the SCSA
method is reliable. The total sensitivity indices are given in Table
10. The relative importance order given by Sr; or S% is the same
as that given by S; or 7. The similarity of ordering is reasonable
because X.S; = 0.92, i.e., the first-order sensitivity indices
dominate the analysis in this case.

The component functions evaluated from RS-HDMR not only
determine the magnitudes of the sensitivity indices, but the
functions fi(x;), f;i(xi, x;),... also provide qualitative descriptions
of the influence patterns. Figure 5 gives all four significant
functions fi(x;), and Figure 6 shows fj,(x;, x,). Figure 5 shows
that f5(x,) (day) and f3(xs) (Fo4) are large, while fi(x;) (year)
and fs(xs) (Dst) are small. The function f;(x3) monotonically
increases with respect to x3(Fjo4), while f>(x,) changes over
different seasons. The function fi(x;) changes smoothly over
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the 11 year period, while f5(xs) has a more complex pattern with
respect to xs(Dst). Figure 6 shows a very structured pattern for
the cooperative influence of x; (year) and x, (day). The
quantitative and qualitative information given by the RS-HDMR
component functions and global sensitivity analysis are physi-
cally rich for this application.

4. Conclusions

The new global sensitivity analysis method introduced in this
paper provides a unified framework for the treatment of systems
whose input probability distribution may be independent and/
or correlated. The analysis can be applied to mathematical
models as well as to measured laboratory or field data. This
paper established that the unconditional variance of the output
can be decomposed into the covariances of the RS-HDMR
component functions with the output. The covariance for each
component function comprises two terms consisting of a
structural contribution reflecting the nature of the system and a
correlative contribution related to the input probability distribu-
tion. Three sensitivity indices S,,J, Sﬁj, and S’p’j are defined to
represent the total, structural, and correlative contributions of a
single or a subset of inputs X,,. The magnitudes of S, S;, and
Sf,j all need to be considered in order to quantitatively determine
the relative importance of the inputs acting either independently
or collectively. When the inputs are independent, the three
indices reduce to a single index, §,,, equivalent to that specified
by the previous variance-based methods. The global sensitivity
analysis given by the variance-based methods with independent
inputs is a special case of the general treatment of the SCSA
method for systems with arbitrary input probability distributions.

The estimation of the sensitivity indices is based on a meta-
modeling approach in this paper, specifically, the RS-HDMR
expansion. The RS-HDMR component functions are approxi-
mated by cubic B splines whose coefficients are determined by
a backfitting procedure combining a statistical F-test for the
identification of the significant component functions. This
approach is especially useful for laboratory or field data where
the sampling is often uncontrolled. Other meta-models could
be employed as well. After the component functions f,(x,)’s
in eq 12 are obtained, the sensitivity indices, Spj, Sfp‘j, and SI’ZJ.,
can be calculated using eqs 33—35.

A simple linear function with five input variables, which had
either an independent or correlated multinormal distribution, was
used for illustration. For the case of independent inputs, the
results given by the SCSA method and the variance-based
methods are almost the same, but for correlated inputs, the
information obtained by the SCSA method provides further
insights and is more reliable. In the nonlinear simulation model
with three inputs, the results obtained from RS-HDMR cor-
respond very well with the results given by other existing meta-
models for independent sampling. The SCSA method was also
applied to correlated inputs for this nonlinear simulation model.
The characterization of ionospheric electron density from
measured field data was used to successfully test the SCSA
method under realistic conditions, including with no knowledge
of the input pdf.

In summary, the correlation of inputs is very common in
realistic applications. The variance-based methods are unable
to properly treat such cases, which makes the sensitivity analysis

Li et al.

of measured field and laboratory data a challenging task. The
SCSA method provides a practical means to meet this need
based on a covariance decomposition of the unconditional
variance of the output.
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